
QUIC: the details

Robin Marx - @programmingart

https://quic.edm.uhasselt.be
Curl -up ïPrague ïMarch 2019

PhD researcher ïHasselt University

QUIC in Theory and Practice @ DeltaV 2018

https://www.youtube.com/watch?v=B1SQFjIXJtc

http://internetonmars.org/deltav.pdf

My self -worth is determined by random, white men on the internet

https://www.youtube.com/watch?v=B1SQFjIXJtc

http://internetonmars.org/deltav.pdf

QUIC is ñquiteò complexé

ǐ6 ñCoreò specifications:

ǐ QUIC invariants : 9 pages

ǐ QPACK header compression : 37 pages

ǐ Recovery: loss detection and congestion control : 38 pages

ǐ TLS mapping : 43 pages

ǐ HTTP/3 : 53 pages

ǐ Core transport : 139 pages

ǐAt least 20 more side -specs
ǐ Applicability, manageability, spinbit , DATAGRAM, é

https://github.com/quicwg/base-drafts

319 pages total
(9 more than The Hobbit)

2566 issues on github

1. Connection setup: Similar to TLS 1.3, but small differences

https://tools.ietf.org/html/draft-ietf-quic-tls-19

- No ñEnd-of-early-dataò

- No Record layer

- 0-RTT is done in QUIC itself

- QUIC performs all actual

encrypt/decrypt operations

1. Connection setup: TLS is (largely) abstracted out

https://tools.ietf.org/html/draft-ietf-quic-tls-19

TLS is just another opaque bytestream

cryptoData = TLS.getTLSstuff()

sendCryptoFrame(cryptoData)

é

TLS.processTLSstuff(cryptoData)

TLS.onNewKeyAvailable(keyCallback)

1. Connection setup: TLS is (largely) abstracted out: CRYPTO frames

https://github.com/rmarx/quicker

1. Connection setup: Different encryption levels and packet number spaces

https://github.com/quicwg/base-drafts/issues/1018

4 different ñkeysò

- Initial (AEAD) : Canôt be changed, but can be read

- 0-RTT (pre-shared) : Canôt be changed or read, but replayed

- Handshake

- 1-RTT

0, 1

0, 1, 2, 3

0, 1, 2, é, 10

4 é 9000+

1. Connection setup: Different encryption levels and packet number spaces

https://github.com/quicwg/base-drafts/issues/1018

4 different ñkeysò

- Initial (AEAD) : Canôt be changed, but can be read

- 0-RTT (pre-shared) : Canôt be changed or read, but replayed

- Handshake

- 1-RTT

0, 1

0, 1, 2, 3

0, 1, 2, é, 10

4 é 9000+

0, 4

1, 2, 3, 5

6, 7, 8, é, 17

17 é 9000+

everyone else
Winquic

(works because

PN gaps are allowed)

1. Connection setup: Each encryption level has a separate packet type too

https://tools.ietf.org/html/draft-ietf-quic-tls-19

Only 1-RTT

packets use the

ñshortò header

1. Long packet headers: lots of information

https://tools.ietf.org/html/draft-ietf-quic-transport-19

1. Long packet headers: information that never changes afterwards

https://tools.ietf.org/html/draft-ietf-quic-transport-19

1. Short packet headers: optimized headers for most data packets

https://tools.ietf.org/html/draft-ietf-quic-transport-19

1. Header protection : actually more than 4 keys!

N different ñkeysò

- Initial (AEAD) : Canôt be changed, but can be read

- 0-RTT (pre -shared) : Canôt be changed or read, but replayed

- Handshake

- 1-RTT

- Header Protection key (same for all packet types)

- Protects flags + Packet Number (NOT connectionID !)

- Unlimited amount of new 1 -RTT keys
- KEY_PHASE bit in the flags

2. ConnectionID

https://tools.ietf.org/html/draft-ietf-quic-transport-19

ǐWhy do we need it?

ǐWhy do we need 2? And then back to 1?

ǐWhy is it so large?

2. ConnectionID : Connection migration and NAT rebinding

https://blog.cloudflare.com/the-road-to-quic/

1) 4G <-> Wifi

2) Network Address

Translation

Both cases can

change IP and/or port

ConnectionID can

stay the same
(or change to previously

agreed upon values)

2. ConnectionID : Asymmetric for Routing/Load balancing

https://datatracker.ietf.org/doc/draft-duke-quic-load-balancers/

image: http://tutorials.jenkov.com/software-architecture/load-balancing.html

Originally: just 1 ConnectionID

Later: source vs destination

Want server to choose CID, to use for routing/load balancing

ǐNeed traffic to go to same origin server

ǐPut routing info inside the CID for stateless load balancers

Statefull:

Remember that 0xabcdefab goes to server 1

Stateless:

0xabcdefa2 always goes to server 2

ĄClient doesnôt know this

Ą Server 2 has to choose its own CID

2. ConnectionID : Client chooses for server, server overrides

https://github.com/rmarx/quicker

2. ConnectionID : Generic metadata storage field

https://datatracker.ietf.org/doc/draft-duke-quic-load-balancers/

https://conferences2.sigcomm.org/co-next/2018/slides/epiq-keynote.pdf

https://www.youtube.com/watch?v=8lYHNzoPS2o

Load balancer wants to support changing CIDs

ĄSame routing info should be encoded in different CIDs

ĄCannot do this for just random values

ĄCID is routing metadata but encrypted!

ĄMetadata can be large, so CID up to 18 bytes!

Facebook also encodes process ID

Ą Seamless handover on server upgrade

First CID:

Decrypted: 0xabcdefa2

Encrypted: 0x12345678

After CID change:

Decrypted: 0xaabbccd2

Encrypted: 0x87654321

3. Minimize overhead

Image: https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

ǐFields are always the same size (even if values are small)

ǐGood for fast processing, bad for minimizing overhead

ǐ 1st example was Short header, there are many more!

3. Minimize overhead: QUIC saves on bits like crazy!

https://tools.ietf.org/html/draft-ietf-quic-transport-19#section-16

ǐVariable Length Integer Encoding + optional fields

(i) = VLIE field

[é] = optional field

3. Minimize overhead: Parsing problems (H3 frames can cross multiple packets)

https://tools.ietf.org/html/draft-ietf-quic-transport-19#section-16

QUIC

short header

Full

HTTP/3 DATA

frame header

Partial (1 byte)

HTTP/3 DATA

frame header

HTTP/3 frame payload
QUIC STREAM

frame header

Single QUIC Packet

3. Minimize overhead: But not always in the same wayé

https://tools.ietf.org/html/draft-ietf-quic-transport-19#section-16

ǐNot everything is VLIE though

ǐDCIL : Destination Connection ID Length

ǐ Faster parsing (e.g., routing, load balancing)

ǐDCIL = 0 : no DCID set

ǐFor all other values: have to do +3!

0000 = 0 bytes

0001 = 4 bytes

0010 = 5 bytes

é

1111 = 18 bytes

3. Minimize overhead: It gets worse

https://tools.ietf.org/html/draft-ietf-quic-transport-19#appendix-A

ǐPacket numbers are ~delta -encoded

ǐ Even large packet numbers use only a small amount of bytes

ǐ More packets on the wire = more bytes needed

ǐ Typically 1 or 2 is enough!

ǐ Done by ñdelta-encodingò based on the largest acknowledged packet

ǐ Complex algorithm that allows leaving out several least -significant bits as well

ǐPacket number length in 2 flag bits (used to be VLIE though)

ǐ 2 bits, number always at least 1 byte long, so always +1 :

ǐ 00 = 1 byte, 01 = 2 bytes, 10 = 3 bytes, 11 = 4 bytes

3. Minimize overhead: yet another trick up my sleeve

https://tools.ietf.org/html/draft-ietf-quic-transport-19#appendix-A

Full packet number

Not full numbers, but COUNTS,

relative to the previous values

- Counts stay very small

ñThe number of packets in the gap is

one higher than

the encoded value of the Gap Fieldò

Most of these will fit in 1 byte each

3. Minimize overhead: yet another trick up my sleeve: Reprise

https://tools.ietf.org/html/draft-ietf-quic-transport-19#appendix-A

ǐACK delay: measured in microseconds

ǐ Indicates the processing delay to generate the ACK

ǐ Allows better estimates for network delay (total ïprocessing = network)

ǐMaybe not everyone needs this high resolutioné

ǐ Value in the packet needs to be multiplied by 2^ack_delay_exponent

ǐ Peer can indicate ack_delay_exponent in transport parameters

ǐ Default: 2^3

ǐ E.g., delay was 400 microseconds, value on the wire is 50
ǐ Anything lower than 8 microseconds cannot be encoded

4. HTTP/3 vs HTTP/2 : Some simplification

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://tools.ietf.org/html/draft-ietf-quic-http-19

https://github.com/rmarx/quicker

ǐQUIC takes over several things that were in H2

ǐ Flow Control

ǐ Streams and stream management

ǐ Padding frames

ǐFun fact: without HTTP/3 implementations, QUIC was tested
with HTTP/0.9

4. HTTP/3 vs HTTP/2 : Head -of - line blocking HTTP/2

multiplexes

multiple

on 1

TCP connection

https://www.youtube.com/watch?v=B1SQFjIXJtc

http://internetonmars.org/deltav.pdf

