
QUIC: the details

Robin Marx - @programmingart

https://quic.edm.uhasselt.be
Curl-up – Prague – March 2019

PhD researcher – Hasselt University

QUIC in Theory and Practice @ DeltaV 2018

https://www.youtube.com/watch?v=B1SQFjIXJtc

http://internetonmars.org/deltav.pdf

My self-worth is determined by random, white men on the internet

https://www.youtube.com/watch?v=B1SQFjIXJtc

http://internetonmars.org/deltav.pdf

QUIC is “quite” complex…

▪ 6 “Core” specifications:

▪ QUIC invariants : 9 pages

▪ QPACK header compression : 37 pages

▪ Recovery: loss detection and congestion control : 38 pages

▪ TLS mapping : 43 pages

▪ HTTP/3 : 53 pages

▪ Core transport : 139 pages

▪ At least 20 more side-specs
▪ Applicability, manageability, spinbit, DATAGRAM, …

https://github.com/quicwg/base-drafts

319 pages total
(9 more than The Hobbit)

2566 issues on github

1. Connection setup: Similar to TLS 1.3, but small differences

https://tools.ietf.org/html/draft-ietf-quic-tls-19

- No “End-of-early-data”

- No Record layer

- 0-RTT is done in QUIC itself

- QUIC performs all actual

encrypt/decrypt operations

1. Connection setup: TLS is (largely) abstracted out

https://tools.ietf.org/html/draft-ietf-quic-tls-19

TLS is just another opaque bytestream

cryptoData = TLS.getTLSstuff()

sendCryptoFrame(cryptoData)

…

TLS.processTLSstuff(cryptoData)

TLS.onNewKeyAvailable(keyCallback)

1. Connection setup: TLS is (largely) abstracted out: CRYPTO frames

https://github.com/rmarx/quicker

1. Connection setup: Different encryption levels and packet number spaces

https://github.com/quicwg/base-drafts/issues/1018

4 different “keys”

- Initial (AEAD) : Can’t be changed, but can be read

- 0-RTT (pre-shared) : Can’t be changed or read, but replayed

- Handshake

- 1-RTT

0, 1

0, 1, 2, 3

0, 1, 2, …, 10

4 … 9000+

1. Connection setup: Different encryption levels and packet number spaces

https://github.com/quicwg/base-drafts/issues/1018

4 different “keys”

- Initial (AEAD) : Can’t be changed, but can be read

- 0-RTT (pre-shared) : Can’t be changed or read, but replayed

- Handshake

- 1-RTT

0, 1

0, 1, 2, 3

0, 1, 2, …, 10

4 … 9000+

0, 4

1, 2, 3, 5

6, 7, 8, …, 17

17 … 9000+

everyone else
Winquic

(works because

PN gaps are allowed)

1. Connection setup: Each encryption level has a separate packet type too

https://tools.ietf.org/html/draft-ietf-quic-tls-19

Only 1-RTT

packets use the

“short” header

1. Long packet headers: lots of information

https://tools.ietf.org/html/draft-ietf-quic-transport-19

1. Long packet headers: information that never changes afterwards

https://tools.ietf.org/html/draft-ietf-quic-transport-19

1. Short packet headers: optimized headers for most data packets

https://tools.ietf.org/html/draft-ietf-quic-transport-19

1. Header protection : actually more than 4 keys!

N different “keys”

- Initial (AEAD) : Can’t be changed, but can be read

- 0-RTT (pre-shared) : Can’t be changed or read, but replayed

- Handshake

- 1-RTT

- Header Protection key (same for all packet types)

- Protects flags + Packet Number (NOT connectionID!)

- Unlimited amount of new 1-RTT keys
- KEY_PHASE bit in the flags

2. ConnectionID

https://tools.ietf.org/html/draft-ietf-quic-transport-19

▪ Why do we need it?

▪ Why do we need 2? And then back to 1?

▪ Why is it so large?

2. ConnectionID: Connection migration and NAT rebinding

https://blog.cloudflare.com/the-road-to-quic/

1) 4G <-> Wifi

2) Network Address

Translation

Both cases can

change IP and/or port

ConnectionID can

stay the same
(or change to previously

agreed upon values)

2. ConnectionID: Asymmetric for Routing/Load balancing

https://datatracker.ietf.org/doc/draft-duke-quic-load-balancers/

image: http://tutorials.jenkov.com/software-architecture/load-balancing.html

Originally: just 1 ConnectionID

Later: source vs destination

Want server to choose CID, to use for routing/load balancing

▪ Need traffic to go to same origin server

▪ Put routing info inside the CID for stateless load balancers

Statefull:

Remember that 0xabcdefab goes to server 1

Stateless:

0xabcdefa2 always goes to server 2

 Client doesn’t know this

 Server 2 has to choose its own CID

2. ConnectionID: Client chooses for server, server overrides

https://github.com/rmarx/quicker

2. ConnectionID: Generic metadata storage field

https://datatracker.ietf.org/doc/draft-duke-quic-load-balancers/

https://conferences2.sigcomm.org/co-next/2018/slides/epiq-keynote.pdf

https://www.youtube.com/watch?v=8lYHNzoPS2o

Load balancer wants to support changing CIDs

Same routing info should be encoded in different CIDs

Cannot do this for just random values

CID is routing metadata but encrypted!

Metadata can be large, so CID up to 18 bytes!

Facebook also encodes process ID

 Seamless handover on server upgrade

First CID:

Decrypted: 0xabcdefa2

Encrypted: 0x12345678

After CID change:

Decrypted: 0xaabbccd2

Encrypted: 0x87654321

3. Minimize overhead

Image: https://www.lifewire.com/tcp-headers-and-udp-headers-explained-817970

▪ Fields are always the same size (even if values are small)

▪ Good for fast processing, bad for minimizing overhead

▪ 1st example was Short header, there are many more!

3. Minimize overhead: QUIC saves on bits like crazy!

https://tools.ietf.org/html/draft-ietf-quic-transport-19#section-16

▪ Variable Length Integer Encoding + optional fields

(i) = VLIE field

[…] = optional field

3. Minimize overhead: Parsing problems (H3 frames can cross multiple packets)

https://tools.ietf.org/html/draft-ietf-quic-transport-19#section-16

QUIC

short header

Full

HTTP/3 DATA

frame header

Partial (1 byte)

HTTP/3 DATA

frame header

HTTP/3 frame payload
QUIC STREAM

frame header

Single QUIC Packet

3. Minimize overhead: But not always in the same way…

https://tools.ietf.org/html/draft-ietf-quic-transport-19#section-16

▪ Not everything is VLIE though

▪ DCIL : Destination Connection ID Length

▪ Faster parsing (e.g., routing, load balancing)

▪ DCIL = 0 : no DCID set

▪ For all other values: have to do +3!

0000 = 0 bytes

0001 = 4 bytes

0010 = 5 bytes

…

1111 = 18 bytes

3. Minimize overhead: It gets worse

https://tools.ietf.org/html/draft-ietf-quic-transport-19#appendix-A

▪ Packet numbers are ~delta-encoded

▪ Even large packet numbers use only a small amount of bytes

▪ More packets on the wire = more bytes needed

▪ Typically 1 or 2 is enough!

▪ Done by “delta-encoding” based on the largest acknowledged packet

▪ Complex algorithm that allows leaving out several least-significant bits as well

▪ Packet number length in 2 flag bits (used to be VLIE though)

▪ 2 bits, number always at least 1 byte long, so always +1:

▪ 00 = 1 byte, 01 = 2 bytes, 10 = 3 bytes, 11 = 4 bytes

3. Minimize overhead: yet another trick up my sleeve

https://tools.ietf.org/html/draft-ietf-quic-transport-19#appendix-A

Full packet number

Not full numbers, but COUNTS,

relative to the previous values

- Counts stay very small

“The number of packets in the gap is

one higher than

the encoded value of the Gap Field”

Most of these will fit in 1 byte each

3. Minimize overhead: yet another trick up my sleeve: Reprise

https://tools.ietf.org/html/draft-ietf-quic-transport-19#appendix-A

▪ ACK delay: measured in microseconds

▪ Indicates the processing delay to generate the ACK

▪ Allows better estimates for network delay (total – processing = network)

▪ Maybe not everyone needs this high resolution…

▪ Value in the packet needs to be multiplied by 2^ack_delay_exponent

▪ Peer can indicate ack_delay_exponent in transport parameters

▪ Default: 2^3

▪ E.g., delay was 400 microseconds, value on the wire is 50
▪ Anything lower than 8 microseconds cannot be encoded

4. HTTP/3 vs HTTP/2 : Some simplification

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://tools.ietf.org/html/draft-ietf-quic-http-19

https://github.com/rmarx/quicker

▪ QUIC takes over several things that were in H2

▪ Flow Control

▪ Streams and stream management

▪ Padding frames

▪ Fun fact: without HTTP/3 implementations, QUIC was tested
with HTTP/0.9

4. HTTP/3 vs HTTP/2 : Head-of-line blocking HTTP/2

multiplexes

multiple

on 1

TCP connection

https://www.youtube.com/watch?v=B1SQFjIXJtc

http://internetonmars.org/deltav.pdf

4. HTTP/3 vs HTTP/2 : Head-of-line blocking HTTP/2

multiplexes

multiple

on 1

TCP connection

Sadly, TCP

doesn’t

know this…

When 1 packet is

lost, all the rest

needs to wait

https://www.youtube.com/watch?v=B1SQFjIXJtc

http://internetonmars.org/deltav.pdf

4. HTTP/3 vs HTTP/2 : Head-of-line blocking HTTP/2

multiplexes

multiple

on 1

TCP connection

Sadly, TCP

doesn’t

know this…

QUIC

allows the

rest to

pass

When 1 packet is

lost, all the rest

needs to wait

https://www.youtube.com/watch?v=B1SQFjIXJtc

http://internetonmars.org/deltav.pdf

4. HTTP/3 vs HTTP/2 : Head-of-line Blocking

▪ QUIC knows about (HTTP/3) streams

▪ Processes them independently

▪ Means there is no strict ordering between streams anymore!

▪ In HTTP/2: arrives in the order you put it on the wire, even if
on different streams

▪ In HTTP/3: arrives ordered per-stream, but not across
streams
▪ E.g.,

if packet 1 for stream A, which was sent first, is lost,
packet 2 for stream B, which was sent second, will arrive before retransmit of 1

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://tools.ietf.org/html/draft-ietf-quic-http-19

4. HTTP/3 vs HTTP/2 : Exclusive priorities

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://tools.ietf.org/html/draft-ietf-quic-http-19

https://speeder.edm.uhasselt.be/www18/files/h2priorities_mwijnants_www2018.pdf

What if you add 2 nodes

exclusively to A at the same time?

4. HTTP/3 vs HTTP/2 : Exclusive priorities

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://tools.ietf.org/html/draft-ietf-quic-http-19

https://speeder.edm.uhasselt.be/www18/files/h2priorities_mwijnants_www2018.pdf

https://github.com/quicwg/base-drafts/issues/2502

C arrived first,

then B

What if you add 2 nodes B and C

exclusively to A at the same time?

“Solution” 1: No more exclusive priorities in HTTP/3

“Solution” 2: Send priority updates on 1 “control stream”

(only updates, not the initial, because HOL blocking!)

B arrived first,

then C

4. HTTP/3 vs HTTP/2 : QPACK vs HPACK

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://tools.ietf.org/html/draft-ietf-quic-http-19

https://tools.ietf.org/html/draft-ietf-quic-qpack-07

▪ HTTP header compression

▪ HPACK: just send encoding information with the header

▪ QPACK:

▪ Separate encoder and decoder streams

▪ Either accept HOL-blocking, or keep sending literals until confirmed

▪ Cannot just send with header, because other streams might start
using encoded value and arrive before the encoding info…

4. HTTP/3 vs HTTP/2 : Priorities (again)

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://speeder.edm.uhasselt.be/www18/files/h2priorities_mwijnants_www2018.pdf

https://tools.ietf.org/html/draft-ietf-quic-http-19

HTTP/2: “fake” streams as grouping nodes

HTTP/3: explicit “placeholder” support built-in

4. HTTP/3 vs HTTP/2 : Push

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://tools.ietf.org/html/draft-ietf-quic-http-19

https://github.com/quicwg/base-drafts/pull/2527

▪ PUSH_PROMISE

▪ HTTP/2: STREAM_ID

▪ HTTP/3: PUSH_ID (more flexible)

▪ DUPLICATE_PUSH (again: saves on bytes)

▪ Due to reordering, DUPLICATE_PUSH frames can arrive before the
corresponding PUSH_PROMISE frame

5. Additional stuff I could talk about

https://tools.ietf.org/html/draft-ietf-quic-transport-19

https://tools.ietf.org/html/draft-ietf-quic-http-19

▪ Max_uni/bidi transport parameters + asymmetric streams

▪ Flow control

▪ Connection vs stream-level

▪ Recovery

▪ Combination of various best practices for loss detection

▪ Pluggable congestion control

▪ Linkability

▪ Prioritization and buffer bloat

▪ QUIC standardized logging and debugging tools

▪ …

