

Internals: walking through a transfer

Items
Concepts

Fundamental structs
Protocol handlers

The multi state machine
Connection caching

Concepts
libcurl is oriented around “transfers”

A transfer equals a “CURL *handle” in an application

A “CURL *handle” is “struct Curl_easy” inside the library (always stored in
the variable ‘data’)

curl_easy_init() is basically just allocating a “struct Curl_easy”

Everything* internally is made non-blocking

curl_easy_perform() is just a wrapper around curl_multi_perform()

* = Not 100% true but it should be true!

The simplest curl program

The multi interface
Any amount of parallel transfers

Single thread

Protocol agnostic

The multi interface, setup
easy1 = curl_easy_init();
curl_easy_setopt(e1, CURLOPT_…, …);

easy2 = curl_easy_init();
curl_easy_setopt(e2, CURLOPT_…, …);

multi = curl_multi_init();

curl_multi_add_handle(multi, easy1);

curl_multi_add_handle(multi, easy2);

The multi interface, transfer
do {

 curl_multi_perform();

 curl_multi_wait();

 if(curl_multi_info_read(&msgs, &left))

 Something();

} while (!done);

The multi interface, shutting down
curl_multi_remove_handle(multi, easy1);

curl_multi_remove_handle(multi, easy2);

curl_easy_cleanup(easy1);

curl_easy_cleanup(easy2);

curl_multi_cleanup(multi);

curl_easy_perform()
Creates a multi handle: curl_multi_init()

Adds the easy handle to multi: curl_multi_add_handle()

Runs the loop until transfer is done:

curl_multi_wait()

curl_multi_perform()

Then calls curl_multi_remove_handle()

Done

curl_multi_perform()
Handles any amount of concurrent transfers

Loops over all handles and invokes multi_runsingle() for each of them.

A sorted tree of timeouts knows the nearest timeout, for
curl_multi_timeout() and more

multi_runsingle()
A state machine ‘data→mstate’.
All transfers start in INIT
It goes to CONNECT where it initializes a new connection or finds an existing to
reuse.
Often, it initiates a name resolve there and switches to the WAITRESOLVE state.
It remains in WAITRESOLVE until the name is resolved (or failed). If successful, it
initiates the connection and goes to WAITCONNECT.
It sits in WAITCONNECT until the connection succeeds.
DO is the state where it issues its request
PERFORM is the “payload transfer” phase
DONE is after the transfer is completed

Getting a connection
“struct connectdata” is for a connection (variables for this
are named ‘conn’ in the code)

libcurl maintains a “connection cache” of previosly used
connections (that weren’t closed)

When a new transfer is to be made, a check is made if an
already existing connection can be used.

Yes that’s a fairly complicated check

Protocol handlers
Given the scheme in the URL for a transfer, libcurl will set
‘conn→handler’ to a dedicated struct Curl_handler for that
protocol.

Curl_handler holds a set of function pointers for protocol
specific functionality.

conn→handler→functionality() is then used from generic
code.

Hm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

