
cURL
Threat Model

December 13, 2022

Prepared for:
Daniel Stenberg, cURL
Open Source Security Foundation (OpenSSF)
Open Source Technology Improvement Fund

Prepared by: Alex Useche and Anders Helsing



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 80+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 cURL Threat Model
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Linux
Foundation under the terms of the project statement of work and has been made public at
Linux Foundation’s request. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

Analysis Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and mutually agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As such, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in
the target system or codebase.

Trail of Bits 2 cURL Threat Model
PUBLIC



Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 2

Executive Summary 5

Project Summary 6

Project Coverage 7

System Diagrams 8

High-Level Data Flow 8

Binary Data Flow 9

Components 10

High-Level Breakdown 10

Binary Breakdown 11

Trust Zones 14

Trust Zone Connections 15

Connection Type and Authentication Breakdown 17

Threat Actors 19

Threat Actor Paths 20

Possible Attack Vectors 21

Summary of Recommendations 22

Summary of Findings 23

Detailed Findings 24

1. Proxy credentials are cached without encryption 24

Trail of Bits 3 cURL Threat Model
PUBLIC



2. Lack of support for MQTT over TLS 25

3. No warnings when TLS connection attempts fail with the --ssl flag 26

4. Contributing guidelines lack recommendations against using insecure C functions
27

5. cURL treats localhost as secure by default 28

6. Insufficient input validation strategy 29

7. Lack of documentation on supported protocol features and RFC compliance 30

A. Methodology 31

B. Security Controls and Rating Criteria 32

C. CVE Analysis 35

High-Level Analysis 39

CIA Triad Impact 39

Common CWEs 39

Common Concerns 40

D. Fix Review Results 41

Detailed Fix Review Results 42

Trail of Bits 4 cURL Threat Model
PUBLIC



Executive Summary

Engagement Overview
The Linux Foundation, via OpenSSF and strategic partner Open Source Technology
Improvement Fund, engaged Trail of Bits to conduct a component-focused threat model of
its cURL. From September 6 to October 7, 2022, a team of two consultants conducted a
threat model of cURL and libcurl. Details of the project’s timeline, test targets, and coverage
are provided in subsequent sections of this report.

Project Scope
Our assessment focused on the identification of security control flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system, especially with
respect to the controls noted in the category breakdown table below. An exhaustive list of
security control types and their definitions can be found in Appendix B.

Summary of Findings
The audit uncovered one design-level issue that could lead to vulnerabilities that
compromise confidentiality, integrity, or availability of users and data handled by the
system under audit.

FINDINGS BY SEVERITY

Severity Count

High 1

Medium 3

Informational 3

FINDINGS BY CONTROL TYPE

Category Count

System and Information
Integrity

1

Awareness and Training 3

System and
Communications Protection

1

Audit and Accountability 1

Configuration Management 1

Trail of Bits 5 cURL Threat Model
PUBLIC



Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O’Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

Derek Zimmer, Program Manager Amir Montazery, Program Manager
derek@ostif.org amir@ostif.org

The following engineers were associated with this project:

Alex Useche, Consultant Anders Helsing, Consultant
alex.useche@trailofbits.com anders.helsing@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 2, 2022 Pre-project kickoff call

September 13, 2022 Status meeting #1

September 16, 2022 Interview meeting

September 20, 2022 Status meeting #2

September 27, 2022 Delivery of preliminary final report

October 11, 2022 Delivery of final report draft

December 13, 2022 Delivery of final report with fix review

Trail of Bits 6 cURL Threat Model
PUBLIC

mailto:dan@trailofbits.com


Project Coverage

During a threat modeling assessment, engineers generally aim to cover the entire target
system as a coherent whole. In some cases, however, certain components may be either
unnecessary to examine, or impossible to review thoroughly.

Security Controls
The following security controls were used to evaluate the project targets during threat
modeling exercises. Further information regarding security controls can be observed within
Appendix B.

● Access Controls
● Audit and Accountability
● Awareness and Training
● Configuration Management
● Cryptography
● Denial of Service
● Identification and Authentication
● Risk Assessment
● System and Communications Protection
● System and Information Integrity

Limitations
Because of the time-boxed nature of testing work, it is common to encounter coverage
limitations. During this project, we focused on considering threats to cURL, including the
command-line utility and libcurl. However, because cURL supports a long list of protocols,
we chose not to treat each protocol implementation as a discrete component. As a result,
our review considers support for various protocols at a high level while focusing on core
components of cURL such as parsing, file input, output operations, and polling of
connections.

Trail of Bits 7 cURL Threat Model
PUBLIC



System Diagrams

The following diagrams depict the relationships between the target system’s various
components and trust zones, as well as the potential paths of threat actors within them.

High-Level Data Flow

Trail of Bits 8 cURL Threat Model
PUBLIC



Binary Data Flow

Trail of Bits 9 cURL Threat Model
PUBLIC



Components

cURL is a command-line utility and C library for data transfers with upstream servers over
several supported protocols. The following tables describe the various components of cURL
considered for the threat model.

High-Level Breakdown

Component Description

cURL Binary The binary uses libcurl and is compiled with a TLS library. This includes
either cURL, the command line utility, or any application built with libcurl.

Upstream Server The server with which cURL communicates (e.g., an HTTPS or FTP server).
Can be located either on the internet or an intranet. May redirect
communication to another upstream server.

Proxy A proxy, either on the internet or an intranet, with which cURL is
configured for making requests to the upstream server.

Memory storage cURL uses in-process memory storage to save connections, TLS sessions,
DNS responses, and other data.

Local file system cURL uses the local file system to store and retrieve cookies, alternative
service (alt-svc) information, HSTS entries, TLS certificates, logging output,
environment variables, and other data. It can also load configuration files
with options to use cURL.

libcurl The core library on top of which cURL is built.

DNS server Domain name resolution, with which cURL communicates for translating
domain names to IP addresses and vice versa.

Local socker Unix socket with which cURL can communicate via the --unix-socket
flag.

CA Store Used by the TLS library with which cURL is compiled. For some libraries
(such as OpenSSL), cURL is responsible for iterating through the files in a
CA store.

Trail of Bits 10 cURL Threat Model
PUBLIC



Binary Breakdown

Component Description

Protocols cURL supports several protocols that allow for two-way data transfers,
most of which support URI schemes. We list protocols supported under
the five categories listed below.

File Transfer SCP, FILE, FTP, FTPS, SFTP, TFTP, SMB, SMBS

Mail IMAP, IMAPS, POP3, POP3S, SMTP, SMTPS

HTTP HTTP, HTTPS, WS, WSS

Streaming RTSP, RTMP, RTMPS

IoT MQTT

Other / Legacy GOPHER, GOPHERS, LDAP, LDAPS, DICT, TELNET

SSL/TLS Logic for handling in-transit encryption

TLS Connectors TLS logic within the libcurl responsible for interacting with TLS libraries

TLS library The TLS library with which cURL was compiled. cURL supports the
following libraries: AmiSSL, BearSSL, BoringSSL, GnuTLS, libressl,
mbedTLS, NSS, OpenSSL, rustls, Schannel, Secure Transport, and WolfSSL.

File I/O Operations in cURL responsible for loading working with files stored on
the system hard drive.

Cookie Engine The cURL cookie engine keeps track of cookies for HTTP and HTTPS
requests and uses the file system to load cookies and store cookie
changes.

Alt-svc Similar to the cookie engine, altsvc.c keeps track of atl-svc headers and
loads them from local file storage.

HSTS Similar to the cookie engine, hsts.c keeps track of HSTS header values and

Trail of Bits 11 cURL Threat Model
PUBLIC



loads them from local file storage.

Other cURL can also read environment files from memory, as well as other files
for various operations, including

● etags
● TLS certificates
● Configuration files such as .netrc and .curlrc

Networking Logic responsible for establishing and maintaining connections to the
various protocols.

PINGPONG Generic back-and-forth support functions for certain protocols (e.g., FTP,
IMAP, POP3, and SMTP).

Connection Reuse The functionality for connection reuse via the connection cache.

Proxy
communication

Logic for communicating via proxies.

DNS logic Logic responsible for name resolution via flags like --dns-servers and
--doh-url.

Local socket
communication

Logic responsible for communicating with local sockets via
--unix-socket.

Parsing Logic used by cURL to parse request and response data.

Parsers Parser logic in various APIs that are part of libcurl. For instance, the
header API parses various request and response headers, and the URL
API parses URLs used for various requests.

Encoders &
Decoders

cURL’s logic for encoding and decoding various data types, such as HTTP
content types (deflate, gzip, zstd, and br) and chunked HTTP requests.

C Logic Any other logic dealing in the cURL codebase that could lead to potential
vulnerabilities, including unrestricted recursions and memory bugs.

Memory operations Operations such as memory and buffer allocations.

Concurrency / Async Operations responsible for calling operations asynchronously (e.g.,
making requests in a non-blocking manner).

Trail of Bits 12 cURL Threat Model
PUBLIC



Rate limiting Operations that limit request rates.

Other C
programming logic

Any other logic that could lead to bugs in the application.

Trail of Bits 13 cURL Threat Model
PUBLIC



Trust Zones

Systems include logical “trust boundaries” or “zones” in which components may have
different criticality or sensitivity. Therefore, to further analyze a system, we decompose
components into zones based on shared criticality rather than physical placement in the
system. Trust zones capture logical boundaries where controls should or could be enforced
by the system and allow designers to implement interstitial controls and policies between
zones of components as needed.

Zone Description Included Components

Internet The externally facing, wider internet
zone. Components in this zone are
untrusted.

● Upstream server
● Proxy
● DNS server

Intranet Local network hosting the system
running the cURL binary.

● Upstream server
● Optional proxy

Local system The local system running the cURL
binary.

● cURL binary:
Protocols, SSL/TLS,
File I/O, Networking,
Parsing, C logic, etc

● Files
● CA Store
● Memory storage

Trail of Bits 14 cURL Threat Model
PUBLIC



Trust Zone Connections

At a design level, trust zones are delineated by the security controls that enforce the
differing levels of trust within each zone. As such, it is necessary to ensure that data cannot
move between trust zones without first satisfying the intended trust requirements of its
destination. We enumerate such connections between trust zones below.

Originating
Zone

Destination
Zone

Data Description Connection
Type

Authentication
Type

Local
system

Internet User data submitted via
protocol specifications
to the upstream server.

Optionally, connection
to proxy between server
and cURL binary.

See Connection
Type
Breakdown

DNS for name
resolution

● Proxy
authentication

● See
Connection
Type
Breakdown

Local
System

Intranet User data submitted via
protocol specifications
to the upstream server.

Optional connection to
proxy between server
and cURL binary.

See Connection Type Breakdown

Local
System

Local
System

cURL can make requests
to Unix sockets using
GET and POST requests.

cURL can generate C
code by specifying a
cURL command and
using the --libcurl
flag.

N/A

Local file IO for various
tasks (see components
table for a list), including
configuration file reads.

Environment variables

Trail of Bits 15 cURL Threat Model
PUBLIC



are read by cURL, which
could change its
behavior. Environmental
variables are read from
memory and include
settings that can in
many cases be specified
in configuration files
instead.

Local
Network

Local
System

Upstream servers on the
local network with which
cURL has established a
connection will return
data to a local system.
Connections could be
proxied via external or
internal proxy servers.

See Connection Type Breakdown

Local
Network

Internet Proxy located in the
intranet that sends data
to an upstream server
located on the internet.

Data that was originally
sent to a server in the
intranet, but was
redirected (fully or
partially) to a server on
the internet.

Trail of Bits 16 cURL Threat Model
PUBLIC



Connection Type and Authentication Breakdown

The following table lists additional details regarding connection types and authentication
methods available for supported protocols. For many protocols such as SMB, users can
authenticate by sending credentials as part of the URI or request headers. However, we list
only authentication types supported when cURL has a specific flag that users can pass to
specify username and password and authentication types.

Protocol Stateful Stateless TCP UDP Authentication

WS / WSS X X -

RTSP X X -

RTMP / RTMPS X X X -

MQTT X X ● Username and
password

IMAP / IMAPS X X ● Username and
password

POP3 / POP3S X X ● Username and
password

SMTP / SMTPS X X ● Username and
password

SCP X X ● Certificate
authentication

● Username and
password

FTP /  FTPS / SFTP X X ● Username and
password

● Certificate
authentication ( for
SFTP)

● Kerberos4 (for FTP)
● kerberos5/GSSAPI (for

FTP)

Trail of Bits 17 cURL Threat Model
PUBLIC



SMB / SMBS X X ● Username and
password

LDAP /  LDAPS X X X ● Basic
● NTLM
● Digest

TELNET X X -

HTTP / HTTPS X X ● Basic
● Digest
● NTLM
● Negotiate
● Bearer

FILE X X -

TFTP X X -

GOPHER / GOPHERS X X -

DICT X X -

FILE N/A N/A N/A N/A -

Trail of Bits 18 cURL Threat Model
PUBLIC



Threat Actors

Similarly to establishing trust zones, defining malicious actors when conducting a threat
model is useful in determining which protections, if any, are necessary to mitigate or
remediate a vulnerability. We will use these actors in all subsequent findings from the
threat model. Additionally, we define other “users” of the system who may be impacted by,
or induced to undertake, an attack. For example, in a confused deputy attack such as
cross-site request forgery, a normal user would be both the victim and the potential direct
attacker, even though that user would be induced to undertake the action by a secondary
attacker.

Actor Description

External attacker An attacker on the internet. They can control servers and proxies
on the internet, eavesdrop, and create Man-in-the-Middle (MitM)
connections in the internet space.

Internal attacker An attacker on the intranet. They can eavesdrop and create MitM
connections on the intranet. They cannot control either servers or
proxies on the intranet.

Local attacker An attacker sitting on the same machine where cURL application is
being run. Has the same or lower level of privileges as the end
user.

End user A user who runs a built cURL binary.

libcurl user Integrates libcurl in custom-developed applications.

Contributor Regular contributor to the project.

Maintainer A gatekeeper controlling additions to the project.

Malicious dependency
developer

A source code dependency of curl that has been compromised.

Trail of Bits 19 cURL Threat Model
PUBLIC



Threat Actor Paths

Defining attackers’ paths through the various zones is useful when analyzing potential
controls, remediations, and mitigations that exist in the current architecture.

Originating
Zone

Destination
Zone

Actor Description

Internet Internet Malicious
dependency
developer

Attackers can introduce malicious
code in dependencies used in the
cURL codebase, compromising users
of the libcurl application and the
cURL command line.

Internet Intranet External
Attacker

Attackers will try to leak sensitive
data intended only for intranet
components. Similarly, they could
target internal proxies used by cURL.

Internet Local system External
Attacker

Attackers will attempt to manipulate
data handled by cURL applications to
gain access to the local system (e.g.,
by exploiting memory corruption
bugs), to perform DoS attacks on the
local system, or to infiltrate the
system's internal network (e.g., via
attacks similar to server-side request
forgery).

Intranet Intranet Internal Attacker Attackers will attempt to find and
exploit bugs in cURL’s network
protocol implementations in order
to bypass the protocols’ security
controls. Examples include dropping
encryption from connections,
downgrading protocol versions,
impersonating authenticated
connections, injecting data into
established connections, and
impersonating servers.

Trail of Bits 20 cURL Threat Model
PUBLIC



Local system Local system Local attacker Attackers with access to a system
running cURL will attempt local
privilege escalation attacks by
manipulating the local environment
(variables, files, configurations, etc.)
prior to end users' usage of the cURL
application.

Possible Attack Vectors

At a high level, we consider the following non-exhaustive list of potential attack vectors
based on the above analysis, in addition to the information gathered in our CVE analysis in
Appendix C. Note that this list does not indicate there are vulnerabilities in each listed area;
rather, it describes possible attack areas where attackers may look for points of failures
and vulnerabilities to take advantage of.

● Invalid usage of libcurl by third-party application developers
● Flaws in protocols implementations, including:

○ Proxy communication
○ Non-conformance with protocol standards
○ Stateful vs. stateless protocol treatments
○ Authentication correctness issues

● Connection reuse flaws leading to issues such as CVE-2022-22576 and
CVE-2022-27782

● Unexpected default behavior
● Flawed cross-endpoint transfers such as insufficient Same Origin Policy correctness

and insecure HTTP redirects
● Flawed cross-protocol communication logic (e.g., redirects to other protocols, HTTP

version changes, HTTP connection upgrades)
● Data transformations such as parsing, serialization, encoding, and data validation
● Memory safety issues
● Interaction with local system
● Insecure interaction with the kernel via networking interfaces or Unix sockets
● Incorrect or insecure DNS usage
● Race conditions and other concurrency bugs
● vTLS and TLS integration issues such as flaws in HSTS parsing or handling of

certificates

Trail of Bits 21 cURL Threat Model
PUBLIC

https://nvd.nist.gov/vuln/detail/CVE-2022-22576
https://nvd.nist.gov/vuln/detail/CVE-2022-27782


Summary of Recommendations

Throughout the engagement, Trail of Bits identified a number of threat scenarios that may
introduce risk within cURL. Trail of Bits recommends that the Linux Foundation address the
findings detailed in this report and take the following additional steps to further build upon
threat modeling exercises:

● Document deviations from RFCs and invariants for the various supported protocols,
as a way to both inform cURL users of such deviations and document features that
can be implemented or improved upon by cURL contributors. This can also drive
property-based testing efforts.

● Consider implementing a property-based testing strategy driven by requirements
specified by the RFCs for the various protocols supported by cURL.

● Devise a centralized input validation that relies on allowlists rather than denylists for
checking against certain illegal characters per RFC specifications such as RFC 1738.

● Consider using tools such as weggli that allow you to write custom static analysis
rules to run checks against potential issues, including non-conformance to RFC
specification, insecure use of C functions such as malloc, and use of other insecure
functions. These checks should run before merging pull requests into the codebase.

● Always default to secure settings for any operations that cURL performs. Implement
terminal flags (such as -k for skipping certificate validation) to force users to tell
cURL to skip or bypass secure defaults. See the recommendations in TOB-CURLTM-4
for a specific example.

Trail of Bits 22 cURL Threat Model
PUBLIC

https://www.ietf.org/rfc/rfc1738.txt#:~:text=The%20lower%20case%20letters%20%22a,well%20as%20%22http%22).
https://github.com/googleprojectzero/weggli


Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Proxy credentials are cached without
encryption

System and
Information
Integrity

Medium

2 Lack of support for MQTT over TLS System and
Communications
Protection

Medium

3 No warnings when TLS connection attempts
fail with the --ssl flag

Audit and
Accountability

Informational

4 Contributing guidelines lack recommendations
against using insecure C functions

Awareness and
Training

Medium

5 cURL treats localhost as secure by default Configuration
Management

Informational

6 Insufficient input validation strategy Awareness and
Training

High

7 Lack of documentation on supported protocol
features and RFC compliance

Awareness and
Training

Informational

Trail of Bits 23 cURL Threat Model
PUBLIC



Detailed Findings

1. Proxy credentials are cached without encryption

Severity: Medium Difficulty: High

Type: System and Information Integrity Finding ID: TOB-CURLTM-1

Target: cURL

Description
Users are able to configure cURL to communicate with the upstream server using a proxy
they specify. cURL caches credentials for proxies provided by users in memory, so they can
be reused for subsequent connections. These credentials are stored in memory in
plaintext.

Threat Scenario
An attacker with access to the system running cURL uses a utility to dump heap memory
used by cURL. The attacker then lists the credentials that the proxy uses to connect to the
proxy and re-uses them to authenticate to it.

Justification
The severity is medium. Access to proxy credentials could allow the attacker to compromise
the proxy.

The difficulty is high. Access to the system running cURL is required. Furthermore, the
attacker would need to be able to run a utility to dump process memory from cURL.

Recommendations
Short term, consider encrypting proxy credentials in memory and clearing them as soon as
they are no longer needed.

Trail of Bits 24 cURL Threat Model
PUBLIC



2. Lack of support for MQTT over TLS

Severity: Medium Difficulty: High

Type: System and Communications
Protection

Finding ID: TOB-CURLTM-2

Target: cURL, libcurl

Description
cURL supports data transfers and communication over the MQTT protocol. This protocol
allows a client, such as a cURL, to communicate with an MQTT and subscribe to events for
user-defined topics. However, communications with MQTT that are brokered over TLS
(MQTTS) are not supported by cURL.

Threat Scenario
Eve decides to use cURL for data transfers over MQTT. She realizes that cURL does not
support MQTTS, so she decides to instead communicate with the non-TLS MQTT broker.
Her communications with the broker are now intercepted by an attacker in the network,
resulting in a loss of confidentiality.

Justification
The severity is medium. Attackers with an MitM position will be able to read MQTT
communications in plaintext.

The difficulty is high. Attackers would need to position themselves in the network and be
able to capture communications between cURL and the upstream server. Furthermore,
users are likely to use other utilities when they need to communicate with MQTTS servers.

Recommendations
Short term, extend cURL to support MQTT over TLS.

Trail of Bits 25 cURL Threat Model
PUBLIC



3. No warnings when TLS connection attempts fail with the --ssl flag

Severity: Informational Difficulty: High

Type: Audit and Accountability Finding ID: TOB-CURLTM-3

Target: cURL

Description
cURL supports enabling TLS for various protocols with the --ssl flag. This flag tells cURL to
communicate with the upstream server over TLS if the server supports it. In cases where
cURL is unable to connect over TLS, data transfers will continue over plaintext or non-TLS
connections without warning the user that the connection was not upgraded to TLS. Note
that users can force the use of SSL by specifying the --ssl-reqd flag.

Threat Scenario
A user uses cURL to communicate with a server and specifies --ssl. The connection
upgrade fails, and due to the lack of warning, the user believes the connection was
established over TLS.

Recommendations
Short term, add a warning to STDOUT to notify users when connection upgrades fail.
Consider adding a flag to allow users to ignore such warnings if they wish.

Trail of Bits 26 cURL Threat Model
PUBLIC

https://everything.curl.dev/usingcurl/tls/enable


4. Contributing guidelines lack recommendations against using insecure C
functions

Severity: Medium Difficulty: Medium

Type: Awareness and Training Finding ID: TOB-CURLTM-4

Target: cURL, libcurl

Description
The cURL website includes documentation on contribution guidelines and a C style guide.
However, neither document includes guidelines mandating or recommending secure C
coding practices and standards, such as discouraging the use of insecure functions like
strcpy, atoi, and fscanf. Although cURL uses scripts/checksrc.pl to disallow the
use of certain functions, guidelines should exist that recommend secure C coding
standards for contributors, particularly as some functions such as strcpy are not
disallowed by the same script.

Threat Scenario
A developer pushes insecure code to cURL that is not caught by automated scripts or PR
reviewers, introducing new vulnerabilities into the application or library.

Justification
The severity is medium. Insecure code and functions such as atoi and strcpy pushed to
the codebase can introduce undefined behavior and other bugs that could lead to
vulnerabilities such as code execution.

The difficulty is medium. The scripts/checksrc.pl script checks against the use of a list
of banned functions listed in docs/CHECKSRC.md. Pull request requirements also reduce
the likelihood that insecure code may be introduced.

Recommendations
Short term, include secure C coding guidelines in either the contribution guidelines or the C
style guide. Either document should list the banned function that scripts/checksrc.pl
checks against. If functions such as scripts/checksrc.pl continue to be avoidable by
using non-standard libraries, the same document should describe how these functions
should be used.

Trail of Bits 27 cURL Threat Model
PUBLIC

https://curl.se/dev/contribute.html
https://curl.se/dev/code-style.html


5. cURL treats localhost as secure by default

Severity: Informational Difficulty: High

Type: Configuration Management Finding ID: TOB-CURLTM-5

Target: cURL, libcurl

Description
By default, cURL assumes that connection requests to localhost, 127.0.0.1, and [::1]
are secure and disables relevant security features, such as accepting the use of the secure
cookie flag for insecure connections to localhost and cURL skipping name resolution
checks. This may mislead cURL users into believing that their connections to localhost
are secure.

Threat Scenario
A web developer uses cURL to make requests against a site they are developing and
running on http://localhost:8080. Since cURL accepts and honors secure cookies
from an insecure localhost, the developer assumes the application's behavior in
localhost will match when it is deployed to production and makes assumptions about
how the cookie flags will be treated when deploying to production.

Recommendations
Short term, explicitly document how cURL treats requests to localhost differently than
requests to upstream servers.

Long term, update cURL so that it treats localhosts securely by default, and introduce a
flag that users can use when calling cURL to turn off insecure behavior, such as disallowing
cookies with the secure flag to be sent to localhost endpoints. This flag can work
similarly to -k, which users can use when leveraging self-signed certificates to bypass
validation.

Trail of Bits 28 cURL Threat Model
PUBLIC



6. Insu�cient input validation strategy

Severity: High Difficulty: Medium

Type: Configuration Management Finding ID: TOB-CURLTM-6

Target: cURL, libcurl

Description
cURL performs input sanitization using a denylist of characters rather than strongly
validating characters against an allowlist, regex, or similar. For instance, cURL allows
potentially unsafe characters into cookie jar files, which could lead to broken functionality.
This behavior deviates from relevant RFC specifications such as RFC 1738, which defines a
set of permitted characters for URIs and disallows all others.

Threat Scenario
A zero-day exploit that takes advantage of weak URI validation is used against applications
that rely on libcurl. Attackers leverage the exploit to compromise the confidentiality,
integrity, or availability of user data and services that rely on such applications.

Justification
The severity is high. Because validation relies in many cases on denylists, it is difficult to
account for future attacks that could make cURL vulnerable to attacks allowing malicious
actors to compromise users, perform privilege escalation, or use cURL to run custom code
remotely.

The difficulty is medium. There are no immediate concerns regarding allowed characters
which cURL may not account for in their deny lists. However,  deny lists are difficult to
maintain and provide little protection against potential zero-day attacks, as new exploits
may rely on the use of characters such as ‘\t‘, which cURL may not verify against.

Recommendations
Short term, default to using allow lists for sanitization and validation strategies for the
various parsing tasks that cURL performs, such as cookie and URI parsing routines.

Long term, review RFCs for the various protocols and strings that cURL works with and
parses and assure that the code conforms to the expectations outlined in such documents.
Additionally, follow recommendations for TOB-CURLTM-6.

Trail of Bits 29 cURL Threat Model
PUBLIC

https://www.ietf.org/rfc/rfc1738.txt#:~:text=The%20lower%20case%20letters%20%22a,well%20as%20%22http%22).


7. Lack of documentation on supported protocol features and RFC compliance

Severity: Informational Difficulty: High

Type: Awareness and Training Finding ID: TOB-CURLTM-7

Target: cURL, libcurl

Description
cURL supports communications with upstream servers that rely on multiple protocols such
as those listed in the Components table of this document. Data communications with each
protocol must conform to the RFC documentation that is publicly available for each
protocol. In some cases, conformance to RFC requirements is not strictly enforced by cURL
for each protocol. Although upstream servers with which cURL communicates should
enforce data conformance to applicable RFC requirements, attackers could take advantage
of cURL’s non-strict conformance to the same RFC for various attacks. Moreover, users of
cURL, including application developers relying on libcurl, may incorrectly assume full
compliance with the various protocol RFCs.

Threat Scenario
A developer makes assumptions about cURLs compliance to RFCs and implements a
feature insecurely. An attacker notices this non-compliance and takes advantage of it to
craft new attacks.

Recommendations
Short term, document deviations from RFCs and make it easily available for users of cURL
so they understand where cURL stops data validation against RFC standards and when the
responsibility is placed on upstream servers, developers, and users of cURL.

Long term, implement a property-based testing strategy that relies on testing specific
properties defined in the RFC documents for every supported protocol.

Trail of Bits 30 cURL Threat Model
PUBLIC



A. Methodology

Trail of Bits’s threat modeling assessments are intended to provide a detailed analysis of
the risks facing an application at a structural and operational level, assessing the security of
its design as opposed to its implementation details. During these assessments, engineers
rely heavily on frequent meetings with the client’s developers, paired with extensive
readings of any and all documentation the client can make available. Code review and
dynamic testing are not an integral part of threat modeling assessments, although
engineers may occasionally consult the codebase or a live instance to verify specific
assumptions about the system’s design.

Engineers begin a threat modeling assessment by identifying the safeguards and
guarantees that are critical to maintaining the target system’s confidentiality, integrity, and
availability. These security controls dictate the assessment’s overarching scope, and are
determined based on the specific requirements of the target system, which may include
technical and reputational concerns, legal liability, regulatory compliance, and so on.

With these security controls in mind, engineers then divide the system into logical
components—discrete elements that perform specific tasks—and establish trust zones
around groups of components that lie within a common trust boundary. They identify the
types of data handled by the system, enumerating the points at which data is sent,
received, or stored by each component, as well as within and across trust boundaries.

Having established a detailed map of the target system’s structure and data flows,
engineers then identify threat actors—anyone who might threaten the target’s security,
whether a malicious external attacker, a naive insider, or otherwise. Based on each threat
actor’s initial privileges and knowledge, threat actor paths are then traced out through the
system, establishing which controls and data a threat actor might be able to improperly
access, as well as which safeguards stand in the way of such compromise. Any viable attack
path discovered in this way constitutes a finding, which will also be paired with design
recommendations by which such gaps in the system’s defenses can be remediated.

After enumerating a list of findings, engineers rate the strength of each security control,
indicating the general robustness of that type of defense against the full spectrum of
possible attacks.

Trail of Bits 31 cURL Threat Model
PUBLIC



B. Security Controls and Rating Criteria

The following tables describe the security controls and rating criteria used in this report.

Security Controls for Threat Modeling assessment

Category Description

Access Controls Authorization (including entitlement, access controls), session
management, separation of duties, API and interfaces security, etc.

Audit and
Accountability

Logging, non-repudiation, monitoring, analysis, reporting, etc.

Awareness and
Training

Controls related to policies, procedures, and related capabilities

Configuration
Management

Inventory, secure baselines, configuration management & change control

Cryptography The cryptographic controls implemented at rest, in transit, and in-process

Denial of Service The controls to defend against different types of denial-of-service attacks
impacting availability

Identification and
Authentication

User and system identification and authentication controls

Risk Assessment Risk assessment policies, vulnerability scanning capabilities, and risk
management solutions.

System and
Communications
Protection

Network level controls to protect data, network security, component
security, and hardening, vendors’ solutions and their integration, security
of elements build internally

System and
Information
Integrity

Software integrity, malicious code protection, monitoring, information
handling, and related controls

Rating Criteria

Rating Description

Trail of Bits 32 cURL Threat Model
PUBLIC



Strong The security control was reviewed and no concerns were found.

Satisfactory The security control had only minor issues; though it may lack certain
non-critical operational procedures or security measures, their absence
does not expose users to a significant degree of risk. Remediation in this
area is suggested, but is not urgent.

Moderate The security control had several issues or an impactful issue which may
expose users  to some degree of risk, albeit not to a severe degree.
Remediation in this area is desired.

Weak The security control had several significant issues which are likely to
expose users to a substantial amount of risk. Remediation in this area
should be prioritized.

Missing The security control was found to be nonexistent or totally ineffective for
its intended purpose, despite being necessary for the system’s security.
The implementation of this control should be prioritized.

Not Applicable The security control is not applicable to this review.

Not Considered The security control was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Trail of Bits 33 cURL Threat Model
PUBLIC



Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The threat is well known or common; an attacker can exploit it without
significant effort or specialized knowledge.

Medium An attacker must acquire in-depth knowledge of the system or expend a
non-trivial amount of effort in order to exploit this issue.

High An attacker must acquire complex insider knowledge or privileged access to
the system in order to exploit this issue.

Trail of Bits 34 cURL Threat Model
PUBLIC



C. CVE Analysis

We analyzed the last CVEs (33) reported for cURL over the past three years. For each CVE,
we examined the CWE to determine the key root cause and which aspects of the CIA triad
were affected. Next, we determined which key components were affected by each CVE. This
allowed us to better understand common attack paths from a historical perspective and to
determine commonly affected components and root causes.

CVE CWE Root Cause Impact Component

CVE-2022-35252:
control code in
cookie denial of
service

1286 Input validation (invalid server
cookie accepted)

Availability HTTP

CVE-2022-32208:
FTP-KRB bad
message verification

924 Data injection (injecting mitm
data into error msg)

Integrity FTP or KRB

CVE-2022-32207:
Unpreserved file
permissions

281 File permission problem
(overwrite does not retain
rights)

Confidentiality “cookie.c”

CVE-2022-32206:
HTTP compression
denial of service

770 Unbounded compression
chain from server

Availability HTTP

CVE-2022-32205:
Set-Cookie denial of
service

770 Input validation (invalid server
set-cookie:)

Availability HTTP

CVE-2022-30115:
HSTS bypass via
trailing dot

319 Data validation (trailing dot
can bypass HSTS)

Confidentiality HSTS

CVE-2022-27782:
TLS and SSH
connection too
eager reuse

295
840

Improper certificate Validation Integrity CONNECTION
POOL

CVE-2022-27781: 835 Uncontrolled resource Availability URL, NSS

Trail of Bits 35 cURL Threat Model
PUBLIC

https://curl.se/docs/CVE-2022-35252.html
https://curl.se/docs/CVE-2022-35252.html
https://curl.se/docs/CVE-2022-35252.html
https://curl.se/docs/CVE-2022-35252.html
https://curl.se/docs/CVE-2022-32208.html
https://curl.se/docs/CVE-2022-32208.html
https://curl.se/docs/CVE-2022-32208.html
https://curl.se/docs/CVE-2022-32207.html
https://curl.se/docs/CVE-2022-32207.html
https://curl.se/docs/CVE-2022-32207.html
https://curl.se/docs/CVE-2022-32206.html
https://curl.se/docs/CVE-2022-32206.html
https://curl.se/docs/CVE-2022-32206.html
https://curl.se/docs/CVE-2022-32205.html
https://curl.se/docs/CVE-2022-32205.html
https://curl.se/docs/CVE-2022-32205.html
https://curl.se/docs/CVE-2022-30115.html
https://curl.se/docs/CVE-2022-30115.html
https://curl.se/docs/CVE-2022-30115.html
https://curl.se/docs/CVE-2022-27782.html
https://curl.se/docs/CVE-2022-27782.html
https://curl.se/docs/CVE-2022-27782.html
https://curl.se/docs/CVE-2022-27782.html
https://curl.se/docs/CVE-2022-27781.html


CERTINFO
never-ending
busy-loop

400 Consumption

CVE-2022-27780:
percent-encoded
path separator in
URL host

918
177

Improper handling of URL
encoding

Integrity URL

CVE-2022-27779:
cookie for trailing
dot TLD

668
201

Insertion of sensitive
information into sent data

Confidentiality URL

CVE-2022-27778:
curl removes wrong
file on error

706 Use of incorrectly-resolved
name or reference

Integrity Availability TOOL

CVE-2022-27776:
Auth/cookie leak on
redirect

522 Insufficiently protected
credentials

Confidentiality HTTP

CVE-2022-27775:
Bad local IPv6
connection reuse

200 Exposure of sensitive
information to an
unauthorized actor

Confidentiality CONNECTION
POOL

CVE-2022-27774:
Credential leak on
redirect

522 Insufficiently protected
credentials

Confidentiality HTTP

CVE-2022-22576:
OAUTH2 bearer
bypass in
connection re-use

287 Improper authentication Confidentiality Integrity CONNECTION
POOL

CVE-2021-22947:
STARTTLS protocol
injection via MITM

345
310

Insufficient verification of data
Authenticity / cryptographic
Issues

Integrity PINGPONG
(used for
several
protocols)

CVE-2021-22946:
Protocol downgrade
required TLS
bypassed

319
325

Missing cryptographic step Confidentiality PINGPONG
(IMAP, POP3,
FTP)

Trail of Bits 36 cURL Threat Model
PUBLIC

https://curl.se/docs/CVE-2022-27781.html
https://curl.se/docs/CVE-2022-27781.html
https://curl.se/docs/CVE-2022-27781.html
https://curl.se/docs/CVE-2022-27780.html
https://curl.se/docs/CVE-2022-27780.html
https://curl.se/docs/CVE-2022-27780.html
https://curl.se/docs/CVE-2022-27780.html
https://curl.se/docs/CVE-2022-27779.html
https://curl.se/docs/CVE-2022-27779.html
https://curl.se/docs/CVE-2022-27779.html
https://curl.se/docs/CVE-2022-27778.html
https://curl.se/docs/CVE-2022-27778.html
https://curl.se/docs/CVE-2022-27778.html
https://curl.se/docs/CVE-2022-27776.html
https://curl.se/docs/CVE-2022-27776.html
https://curl.se/docs/CVE-2022-27776.html
https://curl.se/docs/CVE-2022-27775.html
https://curl.se/docs/CVE-2022-27775.html
https://curl.se/docs/CVE-2022-27775.html
https://curl.se/docs/CVE-2022-27774.html
https://curl.se/docs/CVE-2022-27774.html
https://curl.se/docs/CVE-2022-27774.html
https://curl.se/docs/CVE-2022-22576.html
https://curl.se/docs/CVE-2022-22576.html
https://curl.se/docs/CVE-2022-22576.html
https://curl.se/docs/CVE-2022-22576.html
https://curl.se/docs/CVE-2021-22947.html
https://curl.se/docs/CVE-2021-22947.html
https://curl.se/docs/CVE-2021-22947.html
https://curl.se/docs/CVE-2021-22946.html
https://curl.se/docs/CVE-2021-22946.html
https://curl.se/docs/CVE-2021-22946.html
https://curl.se/docs/CVE-2021-22946.html


CVE-2021-22945:
UAF and double-free
in MQTT sending

415 Double free Confidentiality MQTT

CVE-2021-22926:
CURLOPT_SSLCERT
mixup with Secure
Transport

295 Improper certificate validation Availability “DARWIN TLS”

CVE-2021-22925:
TELNET stack
contents disclosure
again

457 Use of uninitialized variable Confidentiality TELNET

CVE-2021-22924:
Bad connection
reuse due to flawed
path name checks

295 Improper certificate validation Confidentiality CONNECTION
POOL

CVE-2021-22923:
Metalink download
sends credentials

522 Insufficiently protected
credentials

Confidentiality TOOL

CVE-2021-22922:
Wrong content via
metalink not
discarded

20 Improper input validation Integrity TOOL

CVE-2021-22901:
TLS session caching
disaster

416 Use after free Availability
Integrity
Confidentiality

CONNECTION
POOL

CVE-2021-22898:
TELNET stack
contents disclosure

457 Use of uninitialized variable Confidentiality TELNET

CVE-2021-22897:
schannel cipher
selection surprise

488 Exposure of data element to
wrong session

Confidentiality SCHANNEL

CVE-2021-22890:
TLS 1.3 session
ticket proxy host

290 Authentication bypass by
spoofing

Integrity PROXY or VTLS

Trail of Bits 37 cURL Threat Model
PUBLIC

https://curl.se/docs/CVE-2021-22945.html
https://curl.se/docs/CVE-2021-22945.html
https://curl.se/docs/CVE-2021-22945.html
https://curl.se/docs/CVE-2021-22926.html
https://curl.se/docs/CVE-2021-22926.html
https://curl.se/docs/CVE-2021-22926.html
https://curl.se/docs/CVE-2021-22926.html
https://curl.se/docs/CVE-2021-22925.html
https://curl.se/docs/CVE-2021-22925.html
https://curl.se/docs/CVE-2021-22925.html
https://curl.se/docs/CVE-2021-22925.html
https://curl.se/docs/CVE-2021-22924.html
https://curl.se/docs/CVE-2021-22924.html
https://curl.se/docs/CVE-2021-22924.html
https://curl.se/docs/CVE-2021-22924.html
https://curl.se/docs/CVE-2021-22923.html
https://curl.se/docs/CVE-2021-22923.html
https://curl.se/docs/CVE-2021-22923.html
https://curl.se/docs/CVE-2021-22922.html
https://curl.se/docs/CVE-2021-22922.html
https://curl.se/docs/CVE-2021-22922.html
https://curl.se/docs/CVE-2021-22922.html
https://curl.se/docs/CVE-2021-22901.html
https://curl.se/docs/CVE-2021-22901.html
https://curl.se/docs/CVE-2021-22901.html
https://curl.se/docs/CVE-2021-22898.html
https://curl.se/docs/CVE-2021-22898.html
https://curl.se/docs/CVE-2021-22898.html
https://curl.se/docs/CVE-2021-22897.html
https://curl.se/docs/CVE-2021-22897.html
https://curl.se/docs/CVE-2021-22897.html
https://curl.se/docs/CVE-2021-22890.html
https://curl.se/docs/CVE-2021-22890.html
https://curl.se/docs/CVE-2021-22890.html


mixup

CVE-2021-22876:
Automatic referer
leaks credentials

359 Exposure of private personal
information to an
unauthorized actor

Confidentiality HTTP

CVE-2020-8286:
Inferior OCSP
verification

299 Improper check for certificate
revocation

Integrity OPENSSL

CVE-2020-8285: FTP
wildcard stack
overflow

674 Uncontrolled recursion Availability FTP

CVE-2020-8284:
trusting FTP PASV
responses

200 Exposure of sensitive
information to an
unauthorized actor

Confidentiality FTP

CVE-2020-8231:
wrong connect-only
connection

825 Expired pointer dereference Confidentiality CONNECTION
POOL

CVE-2020-8177: curl
overwrite local file
with -J

641 Improper restriction of names
for files and other resources

Confidentiality TOOL

CVE-2020-8169:
Partial password
leak over DNS on
HTTP redirect

200 Exposure of sensitive
information to an
unauthorized actor

Confidentiality HTTP

Trail of Bits 38 cURL Threat Model
PUBLIC

https://curl.se/docs/CVE-2021-22890.html
https://curl.se/docs/CVE-2021-22876.html
https://curl.se/docs/CVE-2021-22876.html
https://curl.se/docs/CVE-2021-22876.html
https://curl.se/docs/CVE-2020-8286.html
https://curl.se/docs/CVE-2020-8286.html
https://curl.se/docs/CVE-2020-8286.html
https://curl.se/docs/CVE-2020-8285.html
https://curl.se/docs/CVE-2020-8285.html
https://curl.se/docs/CVE-2020-8285.html
https://curl.se/docs/CVE-2020-8284.html
https://curl.se/docs/CVE-2020-8284.html
https://curl.se/docs/CVE-2020-8284.html
https://curl.se/docs/CVE-2020-8231.html
https://curl.se/docs/CVE-2020-8231.html
https://curl.se/docs/CVE-2020-8231.html
https://curl.se/docs/CVE-2020-8177.html
https://curl.se/docs/CVE-2020-8177.html
https://curl.se/docs/CVE-2020-8177.html
https://curl.se/docs/CVE-2020-8169.html
https://curl.se/docs/CVE-2020-8169.html
https://curl.se/docs/CVE-2020-8169.html
https://curl.se/docs/CVE-2020-8169.html


High-Level Analysis

CIA Triad Impact

Figure C.1. CIA triad impact

Common CWEs

Count CWE Title

3 200 Exposure of Sensitive Information to an Unauthorized
Actor

3 295 Improper Certificate Validation

3 522 Insufficiently Protected Credentials

2 319 Data validation (trailing dot can bypass HSTS)

2 457 Use of Uninitialized Variable

2 770 Allocation of Resources Without Limits or Throttling

Trail of Bits 39 cURL Threat Model
PUBLIC



Common Concerns
● Mishandling or ineffective use of TLS
● Revealing sensitive data in URL concerns by using TLS libraries ineffectively or

incorrectly
● Caching of sensitive data via cookies (it is unclear how cURL  handles cookies in

requests and whether those are or can be cached)
● Uncontrolled recursions or infinite loops that cause code to hang

Trail of Bits 40 cURL Threat Model
PUBLIC



D. Fix Review Results

On December 6, 2022, Trail of Bits reviewed the fixes and mitigations implemented by the
Linux Foundation, via OpenSSF and strategic partner Open Source Technology
Improvement Fund team, to resolve the issues identified in this report. OpenSSF delivered
fixes for some of the findings in this report, with associated pull requests when applicable.

In summary, Linux Foundation has sufficiently addressed one of the issues described in
this report, partially resolved one, has not resolved two, and stated that they will not take
action on three issues.

We reviewed each fix to determine its effectiveness in resolving the associated issue. For
additional information, please see the Detailed Fix Log.

ID Title Severity Status

1 Proxy credentials are cached without encryption Medium Unresolved

2 Lack of support for MQTT over TLS Medium Unresolved

3 No warnings when TLS connection attempts fail
with the --ssl flag

Informational Resolved

4 Contributing guidelines lack recommendations
against using insecure C functions

Medium Unresolved

5 cURL treats localhost as secure by default Informational Partially
resolved

6 Insufficient input validation strategy High Unresolved

7 Lack of documentation on supported protocol
features and RFC compliance

Informational Unresolved

Trail of Bits 41 cURL Threat Model
PUBLIC



Detailed Fix Review Results
TOB-CURLTM-1: Proxy credentials are cached without encryption
Unresolved. No changes were made at the time of this fix review.

TOB-CURLTM-2: Lack of support for MQTT over TLS
Unresolved. No changes were made at the time of this fix review.

TOB-CURLTM-3: No warnings when TLS connection attempts fail with the --ssl flag
Resolved. The cURL team added a warning to cURL as recommended in the reported
finding (PR# 9519).

TOB-CURLTM-4: Contributing guidelines lack recommendations against using
insecure C functions
Unresolved. The cURL team stated they will not be accepting the recommendation in the
report.

TOB-CURLTM-5: cURL treats localhost as secure by default
Undetermined. The cURL team stated that they consider localhost to be secure.
However, they added documentation to docs/HTTP-COOKIES.md to explicitly state how
localhost is treated as secure by default by cURL (PR# 9938).

TOB-CURLTM-6: Insufficient input validation strategy
Unresolved. The cURL team stated they cannot fully accept the recommendation in the
report, citing existing levels of strictness in testing parsers, including with fuzzers. The
finding is unresolved as the input validation strategy continues to rely on denylists.

TOB-CURLTM-7: Lack of documentation on supported protocol features and RFC
compliance
Unresolved. The cURL team stated that they will not address the recommendations
provided for this finding and mentioned that all supported features are documented in
depth, with details and examples. They also noted the infeasibility of documenting
compliance with RFCs.

Trail of Bits 42 cURL Threat Model
PUBLIC

https://github.com/curl/curl/pull/9519
https://github.com/curl/curl/pull/9938/files

